• 最后更新 2024-04-11
  • 销量/好评 0 + 评论
  • 交易规则(重要)

深度学习技术应用/英特尔FPGA中国创新中心系列丛书书胡心雷机器学习高等职业教育教材高职工业技术书籍
本站优惠价
51.20
10.0折 原价:¥51.2
  • 销量
  • 卖家
  • 0+
  • 人天兀鲁思图书专营店

服务由"人天兀鲁思图书专营店"发货,并提供售后服务。

    担保交易,安全保证,有问题不解决可申请退款。购买前请询问清楚卖家,以卖家承诺为准! 自动发货商品,随时可以购买,付款后在订单详情下载,零等待。 不同会员等级尊享不同购买折扣。
天猫优惠券

天猫优惠券

已缴纳保证金

该商家已加入保障计划

基本信息 
书名:  深度学习技术应用/英特尔FPGA中国创新中心系列丛书
作者:  胡心雷[等]编著
出版社:  电子工业出版社
出版日期:  2022-03-01
版次:  1
ISBN:  9787121428517
市场价:  68.0
目录 第1章 深度学习简介 001
1.1 深度学起源与发展 001
1.2 深度学定义 004
1.3 深度学优势 005
1.4 深度学应用 006
1.5 深度学主流框架 007
1.5.1 TensorFlow 007
1.5.2 Pytorch 008
1.5.3 Deeplearning4j(DL4J) 008
第2章 神经网络与深度学习 010
2.1 人脑神经网络 013
2.2 人工神经网络 015
2.2.1 感知器 017
2.2.2 单层神经网络 019
2.2.3 多层神经网络 027
2.2.4 激活函数 037
2.3 走向深度学习 039
第3章 TensorFlow环境使用 043
3.1 TensorFlow 简介 044
3.1.1 TensorFlow与Keras的关系 045
3.1.2 TensorFlow 1.x与2.x的区别 046
3.2 TensorFlow基础 049
3.2.1 张量 050
3.2.2 变量 064
3.2.3 计算图 066
3.3 基于TensorFlow的深度学习建模构建 070
3.3.1 建模目的 070
3.3.2 数据处理 071
3.3.3 模型搭建 080
3.3.4 模型编译 085
3.3.5 模型训练 091
3.3.6 模型验证 093
3.3.7 模型保存 096
3.3.8 小结 096
3.4 基于TensorFlow的手写数字识别 099
3.4.1 数据简介 099
3.4.2 数据处理 103
3.4.3 模型搭建 106
3.4.4 模型调优 108
3.4.5 结 114
第4章 卷积神经网络 115
4.1 什么是卷积神经网络 115
4.2 输入层 116
4.3 卷积层 117
4.3.1 填充 118
4.3.2 步幅 125
4.4 池化层 126
4.5 全连接层 127
4.6 Dropout 128
4.7 数据 129
4.8 典型卷积神经网络算法 132
4.8.1 LeNet-5网络 132
4.8.2 AlexNet 133
4.8.3 VGG16 134
4.9 卷积神经网络案例 136
4.9.1 数据简介 136
4.9.2 数据处理 136
4.9.3 模型搭建 138
4.9.4 结 140
第5章 循环神经网络 143
5.1 什么是循环神经网络 143
5.2 长短期记忆和门控循环单元 145
5.2.1 长短期记忆(LSTM) 145
5.2.2 门控循环单元(GRU) 149
5.3 双向循环神经网络 153
5.4 深度循环神经网络案例 154
5.4.1 准备操作 154
5.4.2 数据简介 154
5.4.3 数据处理 155
5.4.4 网络模型搭建 157
5.4.5 模型训练 159
5.4.6 小结 161
第6章 迁移学习 167
6.1 什么是迁移学习 167
6.2 迁移学工作原理 168
6.3 迁移学优势 169
6.4 迁移学方法 170
6.5 微调 171
6.6 利用迁移学习对花进行分类 171
6.6.1 准备操作 172
6.6.2 数据处理 173
6.6.3 网络模型搭建 173
6.6.4 模型训练 175
6.6.5 微调 175
6.6.6 小结 176内容介绍 本书是深度学入门教材,从原理、模型、应用3个维度指导读者掌握深度学习技术及应用。本书共3个部分。第1部分为深度学基础括第1章和第2章,分别介绍了深度学基本概念及其和神经网络之间的关系;第2部分为深度学框架括第3章,介绍了深度学主流框架TensorFlow2.0的基本使用;第3部分是深度学不错主题,即第4章、第5章和第6章,分别讨论了卷积神经网络、循环神经网络及迁移学习。全书所讲解的案例均配有代码实现,并对代码进行了详细注解,读者通过对案例代码的学习和实践,可以深入了解全书讲解的内容。本书适合对人工智能、深度学习技术感兴趣的工程技术人员阅读,也适合人工智能、计算机科学技术相关专业的学生学习参考。在线试读 媒体评论 本书结合了近期新的深度学习技术应用成果,充分考虑了大学生的知识结构和学习特点,结合各个专业特点介绍了深度学基本概念及TensorFlow框架,以及深度学习在各个领域的具体应用。
本书结合了近期新的深度学习技术应用成果,充分考虑了大学生的知识结构和学习特点,结合各个专业特点介绍了深度学基本概念及TensorFlow框架,以及深度学习在各个领域的具体应用。
  • 商品评价
  • 交易规则


  • 发货方式


  • 自动:在特色服务中标有自动发货的商品,拍下后,源码类 软件类 商品会在订单详情页显示来自卖家的商品下载链接,点卡类 商品会在订单详情直接显示卡号密码。

    手动:未标有自动发货的的商品,付款后,商品卖家会收到平台的手机短信、邮件提醒,卖家会尽快为您发货,如卖家长时间未发货,买家也可通过订单上的QQ或电话主动联系卖家。


  • 退款说明


  • 1、源码类:商品详情(含标题)与实际源码不一致的(例:描述PHP实际为ASP、描述的功能实际缺少、功能不能正常使用等)!有演示站时,与实际源码不一致的(但描述中有"不保证完全一样、可能有少许偏差"类似显著公告的除外);

  • 2、营销推广:未达到卖家描述标准的;

    3、点卡软件所售点卡软件无法使用的;

  • 3、发货:手动发货商品,在卖家未发货前就申请了退款的;

    4、服务:卖家不提供承诺的售后服务的;(双方提前有商定和描述中有显著声明的除外)

    5、其他:如商品或服务有质量方面的硬性常规问题的。未符合详情及卖家承诺的。

  • 注:符合上述任一情况的,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法修改描述!


  • 注意事项


  • 1、在付款前,双方在QQ上所商定的内容,也是纠纷评判依据(商定与商品描述冲突时,以商定为准);

    2、源码商品,同时有网站演示与商品详情图片演示,且网站演示与商品详情图片演示不一致的,默认按商品详情图片演示作为纠纷评判依据(卖家有特别声明或有额外商定的除外);

  • 3、点卡软件商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

  • 4、营销推广商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

    5、在有"正当退款原因和依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;

    6、虽然交易产生纠纷的几率很小,卖家也肯定会给买家最完善的服务!但请买卖双方尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于送码网快速介入处理。


  • 送码声明


  • 1、送码网作为第三方中介平台,依据双方交易合同(商品描述、交易前商定的内容)来保障交易的安全及买卖双方的权益;

  • 2、非平台线上交易的项目,出现任何后果均与送码网无关;无论卖家以何理由要求线下交易的(如:要求买家支付宝转账付款的,微信转账付款的等),请联系管理举报,本平台将清退卖家处理。