• 最后更新 2024-03-07
  • 销量/好评 0 + 评论
  • 交易规则(重要)

【新华书店 正版书籍】番茄采摘机器人快速无损作业研究(英文版)(精) 工业/农业技术专业图书
本站优惠价
200.33
10.0折 原价:¥200.33
  • 销量
  • 卖家
  • 0+
  • 平湖市新华书店图书专营店

服务由"平湖市新华书店图书专营店"发货,并提供售后服务。

    担保交易,安全保证,有问题不解决可申请退款。购买前请询问清楚卖家,以卖家承诺为准! 自动发货商品,随时可以购买,付款后在订单详情下载,零等待。 不同会员等级尊享不同购买折扣。
天猫优惠券

天猫优惠券

已缴纳保证金

该商家已加入保障计划

基本信息
商品名称:番茄采摘机器人快速无损作业研究(英文版)(精)开本:16开
作者:刘继展//李智国//李萍萍页数:452
定价:299.0出版时间:2021-01-01
ISBN号:9787030704511 印刷时间:2021-01-01
出版社:科学出版社版次:1
印次:1  
内容提要:        This book shares the latest findings on this topic, systematically introduces readers to advances made in robotic harvesting around the globe, and explores the relations between the development of robotic harvesting and the respective social/economic conditions and agricultural business patterns in various countries/regions. Due to the unstructured setting it is used in, and to the significant differences between individual fruit and vegetable targets, robotic harvesting is currently considered to be one of the most challenging robotics technologies. Accordingly, research into this area involves the integration of various aspects, including biomechanics, optimization design, advanced perception and intelligent control.
    In addition to rapid and damage-free robotic harvesting, which reflects the multidisciplinary nature of the topic, further aspects addressed include gripping collisions with viscoelastic objects, using lasers to cut plant material, plant-fruit response to vacuum sucking and pulling, and performance probability distribution. Highlighting outstanding innovations and reflecting the latest advances in intelligent agricultural equipment in China, the book offers a unique and valuable resource. 目录:Chapter 1    History and Present Situations of Robotic Harvesting Technology: A Review
    1.1    An Industry of Fresh-Eat Fruits and Vegetables and Its Labor-Cost Harvesting
    1.2    The History and Current Situation of the Development of Robotic Harvesting Equipment in the Whole World
        1.2.1    Tomato Harvesting Robots
        1.2.2    Fruit Harvesting Robot for Orchards
        1.2.3    Harvesting Robots for Fruits and Vegetables
        1.2.4    Other Fruit Harvesting Robots
        1.2.5    Other Harvesting Robots
    1.3    Summary and Prospect
        1.3.1    The Continuous Progress of Robotic Harvesting Technology
        1.3.2    Technical Keys to the Development of Harvesting Robot Technology
        1.3.3    The Historical Characteristics of the Technology Development of the Harvesting Robots
        1.3.4    The Breakthrough Points of the Technology Development of Harvesting Robots
        1.3.5    Key Fields of Technology Development of Harvesting Robots
    References
Chapter 2    Damage and Damage-Free Harvesting in Robotic Operation
    2.1    Cause of Fruit Damage in Robot Harvesting
    2.2    Passive Compliant Structure in Robotic Harvesting
        2.2.1    Elastic Surface Material
        2.2.2    Under-Actuated End-Effectors
        2.2.3    Elastic-Medium Fingers
    2.3    Active Compliance Control in Robotic Harvesting
    2.4    The Robotic Speedy Damage-Free Harvesting
        2.4.1    The Significance and Particularity of Robotic Speedy Damage-Free Harvesting
        2.4.2    The Particularity of the Collision in Robotic Speedy Gripping of Fruit
        2.4.3    The Research System of Speedy Damage-Free Harvesting
    References
Chapter 3    The Physical and Mechanical Properties of Tomato Fruit and Stem
    3.1    Summary
        3.1.1    Research Significance
        3.1.2    Content and Innovation
    3.2    The Physical/Mechanical Properties Index System of Tomato Fruit-Stem Related to Robotic Harvesting
    3.3    Physical Properties of Tomato Fruit and Stem
        3.3.1    Structure of Tomato Fruit and Stem
        3.3.2    Physical Property of Tomato Fruit and Stem
    3.4    Mechanical Properties of Tomato Fruit Components
        3.4.1    Material, Equipment, and Method
        3.4.2    Results and Analysis
    3.5    Compressive Mechanical Properties of the Whole Tomato
        3.5.1    The Compression Force-Deformation Properties
        3.5.2    Creep Properties
        3.5.3    Stress Relaxation Properties
        3.5.4    Load-Unload Properties
    3.6    Frictional Mechanical Properties of Tomato Fruits
        3.6.1    Static and Sliding Friction Coefficients
        3.6.2    Measurement of Rolling Resistance Coefficient
    3.7    Mechanical Structure Model of the Whole Tomato Fruit
        3.7.1    The Wheel-like Simplification Mechanical Structure of Fruit
        3.7.2    Mechanical Properties of Tomatoes with Different Numbers of Locules
    3.8    Mechanical Damage in Tomato Fruits
        3.8.1    Mechanical Damage Mechanism of Tomato Fruit
        3.8.2    Physiological Change of Tomatoes After Being Compress
    3.9    The Properties of Tomato Stem
        3.9.1    Stem System
        3.9.2    Mechanical Properties of Tomato Fruit System
        3.9.3    Results
    References
Chapter 4    Development of Damage-Free Hand-Arm System for Tomato Harvesting
    4.1    Summary
        4.1.1    Research Significance
        4.1.2    Content and Innovation
    4.2    Development of Damage-Free Harvesting End-Effector
        4.2.1    System Scheme Design of Damage-Free Harvesting End-Effector
    4.3    Motion Configuration Scheme
    4.4    System Components of the End-Effector
        4.4.1    Mechanism Design of End-Effector
        4.4.2    Design of the Sensing System
        4.4.3    Design of Control System
        4.4.4    Design of Power Supply System
        4.4.5    Structure Design of the End-Effector
        4.4.6    Prototype and Its Performance Indicators
        4.4.7    Upper Lower Type End-Effector
        4.4.8    Passive-active Coupled Compliant End-Effector for Robot Tomato Harvesting
    4.5    Damage-Free Harvesting Hand-arm System Based on Commercial Manipulator
        4.5.1    Background and Needs
        4.5.2    The Control System Structure of Commercial Manipulator
        4.5.3    Control System Integration Between the Manipulator and the End-Effector
    References
Chapter 5    Mathematical Modeling of Speedy Damage-Free Gripping of Fruit
    5.1    Summary
        5.1.1    Research Significance
        5.1.2    Content and Innovation
    5.2    Experiment of Speedy Fruit Gripping and Special Collision Characteristics
        5.2.1    Experiment of Speedy Fruit Gripping
        5.2.2    Collision Characteristics of Speedy Fruit Gripping
    5.3    The Special Collision Issue of Speedy Fruit Gripping
    5.4    Dynamic Characteristics in Different Phases of Speedy Fruit Gripping
    5.5    Fruit Compression Model
        5.5.1    The Viscoelastic Properties of Fruit and the Characterization of Constitutive Model
        5.5.2    Burger's Modified Model for Characterization of Creep Properties of Whole Fruit
    5.6    Complex Collision Model in Speedy Gripping of Fruit
        5.6.1    Phase of Constant-Speed Loading and Phase of Stress Relaxing
        5.6.2    Phase of Collision Decelerating
    5.7    The Basic Law of Collision in Robotic Gripping of Fruit
        5.7.1    The Law of Collision Force in Robotic Gripping of Fruit
        5.7.2    The Influence of Initial Gripping Speed and Fruit Ripeness on Gripping Collision Time
        5.7.3    The Influence of Initial Gripping Speed and Fruit Ripeness on Gripping Collision Deformation
        5.7.4    The Influence of Initial Gripping Speed and Fruit Ripeness on Peak Collision Force
    5.8    The Theoretical Calculation of the Time Consumption of Gripping
        5.8.1    The Stroke Composition of the Finger Gripping Process
        5.8.2    Dimension Relation of Fruit Gripping with Robotic Fingers
        5.8.3    The Time Consumption Composition of the Finger Gripping Process
        5.8.4    Selection of Damage-Free Control Mode
        5.8.5    Time Calculation of Damage-Free Gripping
    5.9    Collision Stage
    References
Chapter 6    Simulation of Damage-Free Robotic Gripping of Fruit
    6.1    Summary
        6.1.1    Research Significance
        6.1.2    Content and Innovation
    6.2    Finite Element Model of Fruit
        6.2.1    Viscoelastic Finite Element Model of the Whole Tomato Fruit
        6.2.2    Nonlinear Multi-component Finite Element Model of Tomato Fruit
    6.3    Simulation of Static Gripping Process
        6.3.1    Geometry Model Finger-Fruit Contacting Process
        6.3.2    Creating Contact Pair
        6.3.3    Model Verification Method
        6.3.4    Prediction Method of Gripping Damage
        6.3.5    The Component Stress Simulation of Different Loading Methods
    6.4    Dynamic Simulation of Gripping Process
        6.4.1    The Software Implementation of Dynamic Gripping Simulation
        6.4.2    The Establishment of System Virtual Prototype for Gripping
        6.4.3    Simulation Analysis of Tomato Fruit Gripping with the End-Effector
    References
Chapter 7    Modeling of the Vacuum Sucked Pulling of Tomato Fruit
    7.1    Summary
        7.1.1    Function of Vacuum Sucked Pulling in Robotic Harvesting
        7.1.2    Research Significance
        7.1.3    Content and Innovation
    7.2    Modeling of Mechanical Behavior for Sucking with Suction Pad
    7.2    .l    Mechanical Relation Between Suction Pad and Spherical Surface
        7.2.2    Experiment on Influence Factors of Suction Force
        7.2.3    The Effect of Fruit Surface Contour on Pull-off Force
    7.3    Mechanical Model of Vacuum Sucked Pulling
        7.3.1    Kinematic and Force Balance Analyses of Pulling of On-plant Fruit with Suction Pad
        7.3.2    Static Analysis of Pulling of On-plant Fruit with Suction Pad
        7.3.3    Discussion
    7.4    Probability Model of Sucked Pulling of On-plant Tomato Fruit
        7.4.1    Rate of Interference and Success of Fruit Gripping
        7.4.2    The Proportion of Fruit Number Per Cluster for Different Harvesting Rounds
        7.4.3    The Required Sucked Pulling Distance and Its Probability for Different Fruit Number in Each Cluster
        7.4.4    Theoretical Influence of Required Sucked Pulling Distance on the Rate of Gripping Interference
        7.4.5    Determination of Sucked Pulling Distance
    References
Chapter 8    Fruit Detaching Methods for Robotic Damage-Free Tomato Harvesting
    8.1    Summary
        8.1.1    Research Significance
        8.1.2    Content and Innovation
    8.2    Theoretical and Experimental Comparison of Non-tool Fruit Detaching Methods
        8.2.1    Non-tool Fruit Detaching Methods
        8.2.2    Experiments of Non-tool Detaching of Tomato Fruit
        8.2.3    Theory of Strength and Detachment of Abscission Layers
        8.2.4    Discussion
    8.3    Experimental Exploration of Laser Cutting of Stems
        8.3.1    Put Forward Laser Cutting of Stems
        8.3.2    The Principle and Advantages of Laser Cutting of Biomaterials
        8.3.3    Particularity and Feasibility of Laser Cutting of Stem
        8.3.4    Experiments on Laser Drilling and Cutting of Tomato Stems
        8.3.5    Results and Discussion
        8.3.6    Realization of Laser Cutting of Peduncles
    8.4    Discussion
    References
Chapter 9    Control Optimization and Test Study
    9.1    Summary
        9.1.1    Research Significance
        9.1.2    Content and Innovation
    9.2    Parameter Optimization of Speedy Flexible Gripping
        9.2.1    PID Parameter Adjustment of the Motion Control System
        9.2.2    Energy Consumption Analysis of Acceleration and Deceleration Stage
        9.2.3    Speed Optimization of Speedy Flexible Gripping
    9.3    Control Optimization of Vacuum Sucked Pulling
        9.3.1    The Relationship Between Maximum Pulling Speed and Displacement in Acceleration Stage
        9.3.2    The Relationship Between the Dynamic Pulling Force and the Threshold of Vacuum Degree
        9.3.3    Optimization of Displacement/Position Parameters for Sucked Pulling of Fruit
        9.3.4    Optimization of Control Mode for Motion Coordination
    9.4    Hand-Arm Coordination Control for Speedy Flexible Harvesting
        9.4.1    Hand-Arm Coordinative Control Modes
        9.4.2    Hand-Arm Coordinated Harvesting Experiments
    References
  • 商品评价
  • 交易规则


  • 发货方式


  • 自动:在特色服务中标有自动发货的商品,拍下后,源码类 软件类 商品会在订单详情页显示来自卖家的商品下载链接,点卡类 商品会在订单详情直接显示卡号密码。

    手动:未标有自动发货的的商品,付款后,商品卖家会收到平台的手机短信、邮件提醒,卖家会尽快为您发货,如卖家长时间未发货,买家也可通过订单上的QQ或电话主动联系卖家。


  • 退款说明


  • 1、源码类:商品详情(含标题)与实际源码不一致的(例:描述PHP实际为ASP、描述的功能实际缺少、功能不能正常使用等)!有演示站时,与实际源码不一致的(但描述中有"不保证完全一样、可能有少许偏差"类似显著公告的除外);

  • 2、营销推广:未达到卖家描述标准的;

    3、点卡软件所售点卡软件无法使用的;

  • 3、发货:手动发货商品,在卖家未发货前就申请了退款的;

    4、服务:卖家不提供承诺的售后服务的;(双方提前有商定和描述中有显著声明的除外)

    5、其他:如商品或服务有质量方面的硬性常规问题的。未符合详情及卖家承诺的。

  • 注:符合上述任一情况的,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法修改描述!


  • 注意事项


  • 1、在付款前,双方在QQ上所商定的内容,也是纠纷评判依据(商定与商品描述冲突时,以商定为准);

    2、源码商品,同时有网站演示与商品详情图片演示,且网站演示与商品详情图片演示不一致的,默认按商品详情图片演示作为纠纷评判依据(卖家有特别声明或有额外商定的除外);

  • 3、点卡软件商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

  • 4、营销推广商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

    5、在有"正当退款原因和依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;

    6、虽然交易产生纠纷的几率很小,卖家也肯定会给买家最完善的服务!但请买卖双方尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于送码网快速介入处理。


  • 送码声明


  • 1、送码网作为第三方中介平台,依据双方交易合同(商品描述、交易前商定的内容)来保障交易的安全及买卖双方的权益;

  • 2、非平台线上交易的项目,出现任何后果均与送码网无关;无论卖家以何理由要求线下交易的(如:要求买家支付宝转账付款的,微信转账付款的等),请联系管理举报,本平台将清退卖家处理。


热门推荐
浏览记录