• 最后更新 2024-03-07
  • 销量/好评 0 + 评论
  • 交易规则(重要)

现货番茄采摘机器人快速无损作业研究 英文版 刘继展 李智国 李萍萍 智能农业领域 农业基础科学 科学出版社 9787030704511
本站优惠价
236.20
10.0折 原价:¥236.2
  • 销量
  • 卖家
  • 0+
  • 盛世天佑图书专营店

服务由"盛世天佑图书专营店"发货,并提供售后服务。

    担保交易,安全保证,有问题不解决可申请退款。购买前请询问清楚卖家,以卖家承诺为准! 自动发货商品,随时可以购买,付款后在订单详情下载,零等待。 不同会员等级尊享不同购买折扣。
天猫优惠券

天猫优惠券

已缴纳保证金

该商家已加入保障计划


商品参数


ISBN编码: 9787030704511 书  名: 番茄采摘机器人快速无损作业研究(英文版) 定  价: 299 出版单位: 科学出版社 出版时间: 2021年11月 著  者: 刘继展,李智国,李萍萍 编  者: 译  者: 页  数: 452 开  本: 16


内容介绍
在我国农业快速步入全面机械化的背景下,果蔬生产作业的机械化仍存在大量空白,而鲜食果蔬的采收更占用高达40%的劳动力,采摘机器人技术研究具有重要的科学价值和现实意义。本书阐述全球采摘机器人研究的进展与进程,并针对困扰机器人采摘作业中果实损伤与作业效率的关键矛盾,提出机器人快速采摘中的夹持碰撞与快速无损收获问题,进而通过力学特性与互作规律、建模仿真、设计方法、样机开发、控制优化的有机结合,系统开展番茄果实宏微本构特征、无损采摘机器人系统开发、勃弹对象的夹持碰撞规律、快速柔顺夹持建模仿真、真空吸持拉动的植株-果实响应、植物体激光切割、快速无损采摘控制优化等研究,有力地推动机器人采摘技术的进步。
目录
Contents
Chapter 1 History and Present Situations of Robotic Harvesting Technology: A Review 1
1.1 An Industry of Fresh-Eat Fruits and Vegetables and Its Labor-Cost Harvesting 1
1.2 The History and Current Situation of the Development of Robotic Harvesting Equipment in the Whole World 2
1.2.1 Tomato Harvesting Robots 2
1.2.2 Fruit Harvesting Robot for Orchards 15
1.2.3 Harvesting Robots for Fruits and Vegetables 38
1.2.4 Other Fruit Harvesting Robots 65
1.2.5 Other Harvesting Robots 74
1.3 Summary and Prospect 88
1.3.1 The Continuous Progress of Robotic Harvesting Technology 88
1.3.2 Technical Keys to the Development of Harvesting Robot Technology 89
1.3.3 The Historical Characteristics of the Technology Development of the Harvesting Robots 90
1.3.4 The Breakthrough Points of the Technology Development of Harvesting Robots 93
1.3.5 Key Fields of Technology Development of Harvesting Robots 95
References 95
Chapter 2 Damage and Damage-Free Harvesting in Robotic Operation 107
2.1 Cause of Fruit Damage in Robot Harvesting 107
2.2 Passive Compliant Structure in Robotic Harvesting 108
2.2.1 Elastic Surface Material 108
2.2.2 Under-Actuated End-Effectors 110
2.2.3 Elastic-Medium Fingers 112
2.3 Active Compliance Control in Robotic Harvesting 114
2.4 The Robotic Speedy Damage-Free Harvesting 118
2.4.1 The Significance and Particularity of Robotic Speedy Damage-Free Harvesting 118
2.4.2 The Particularity of the Collision in Robotic Speedy Gripping of Fruit 120
2.4.3 The Research System of Speedy Damage-Free Harvesting 121
References 123
Chapter 3 The Physical and Mechanical Properties of Tomato Fruit and Stem 127
3.1 Summary 127
3.1.1 Research Significance 127
3.1.2 Content and Innovation 127
3.2 The Physical/Mechanical Properties Index System of Tomato Fruit-Stem Related to Robotic Harvesting 128
3.3 Physical Properties of Tomato Fruit and Stem 129
3.3.1 Structure of Tomato Fruit and Stem 129
3.3.2 Physical Property of Tomato Fruit and Stem 131
3.4 Mechanical Properties of Tomato Fruit Components 134
3.4.1 Material, Equipment, and Method 134
3.4.2 Results and Analysis 143
3.5 Compressive Mechanical Properties of the Whole Tomato 148
3.5.1 The Compression Force-Deformation Properties 148
3.5.2 Creep Properties 153
3.5.3 Stress Relaxation Properties 155
3.5.4 Load-Unload Properties 157
3.6 Frictional Mechanical Properties of Tomato Fruits 160
3.6.1 Static and Sliding Friction Coefficients 160
3.6.2 Measurement of Rolling Resistance Coefficient 163
3.7 Mechanical Structure Model of the Whole Tomato Fruit 164
3.7.1 The Wheel-like Simplification Mechanical Structure of Fruit 164
3.7.2 Mechanical Properties of Tomatoes with Different Numbers of Locules 166
3.8 Mechanical Damage in Tomato Fruits 176
3.8.1 Mechanical Damage Mechanism of Tomato Fruit 176
3.8.2 Physiological Change of Tomatoes After Being Compress 176
3.9 The Properties of Tomato Stem 184
3.9.1 Stem System 184
3.9.2 Mechanical Properties of Tomato Fruit System 186
3.9.3 Results 190
References 192
Chapter 4 Development of Damage-Free Hand-Arm System for Tomato Harvesting 197
4.1.1 Research Significance 197
4.1.2 Content and Innovation 197
4.2 Development of Damage-Free Harvesting End-Effector 198
4.2.1 System Scheme Design of Damage-Free Harvesting End-Effector 198
4.3 Motion Configuration Scheme 199
4.4 System Components of the End-Effector 213
4.4.1 Mechanism Design of End-Effector 214
4.4.2 Design of the Sensing System 223
4.4.3 Design of Control System 225
4.4.4 Design of Power Supply System 228
4.4.5 Structure Design of the End-Effector 230
4.4.6 Prototype and Its Performance Indicators 231
4.4.7 Upper Lower Type End-Effector 233
4.4.8 Passive-active Coupled Compliant End-Effector for Robot Tomato Harvesting 233
4.5 Damage-Free Harvesting Hand-arm System Based on Commercial Manipulator 236
4.5.1 Background and Needs 236
4.5.2 The Control System Structure of Commercial Manipulator 237
4.5.3 Control System Integration Between the Manipulator and the End-Effector 239
References 241
Chapter 5 Mathematical Modeling of Speedy Damage-Free Gripping of Fruit 247
5.1 Summary 247
5.1.1 Research Significance 247
5.1.2 Content and Innovation 247
5.2 Experiment of Speedy Fruit Gripping and Special Collision Characteristics 248
5.2.1 Experiment of Speedy Fruit Gripping 248
5.2.2 Collision Characteristics of Speedy Fruit Gripping 248
5.3 The Special Collision Issue of Speedy Fruit Gripping 250
5.4 Dynamic Characteristics in Different Phases of Speedy Fruit Gripping 250
5.5 Fruit Compression Model 252
5.5.1 The Viscoelastic Properties of Fruit and the Characterization of Constitutive Model 252
5.5.2 Burger’s Modified Model for Characterization of Creep Properties of Whole Fruit 256
5.6 Complex Collision Modelin Speedy Gripping of Fruit 263
5.6.1 Phase of Constant-Speed Loading and Phase of Stress Relaxing 263
5.6.2 Phase of Collision Decelerating 264
5.7 The Basic Law of Collision in Robotic Gripping of Fruit 265
5.7.1 The Law of Collision Force in Robotic Gripping of Fruit 265
5.7.2 The Influence oflnitial Gripping Speed and Fruit Ripeness on Gripping Collision Time 266
5.7.3 The Influence oflnitial Gripping Speed and Fruit Ripeness on Gripping Collision Deformation 267
5.7.4 The Influence oflnitial Gripping Speed and Fruit Ripeness on Peak Collision Force 268
5.8 The Theoretical Calculation of the Time Consumption of Gripping 270
5.8.1 The Stroke Composition of the Finger Gripping Process 270
5.8.2 Dimension Relation of Fruit Gripping with Robotic Fingers 271
5.8.3 The Time Consumption Composition of the Finger Gripping Process 272
5.8.4 Selection of Damage-Free Control Mode 272
5.8.5 Time Calculation of Damage-Free Gripping 273
5.9 Collision Stage 274
References 274
Chapter 6 Simulation of Damage-Free Robotic Gripping of Fruit 277
6.1 Summary 277
6.1.1 Research Significance 277
6.1.2 Content and Innovation 277
6.2 Finite Element Model of Fruit 278
6.2.1 Viscoelastic Finite Element Model of the Whole Tomato Fruit 278
6.2.2 Nonlinear Multi-component Finite Element Model of Tomato Fruit 288
6.3 Simulation of Static Gripping Process 289
6.3.1 Geometry Model Finger-Fruit Contacting Process 289
6.3.2 Creating Contact Pair 290
6.3.3 Model Verification Method 291
6.3.4 Prediction Method of Gripping Damage 292
6.3.5 The Component Stress Simulation of Different Loading Methods 298
6.4 Dynamic Simulation of Gripping Process 314
6.4.1 The Software Implementation of Dynamic Gripping
6.4.2 The Establishment of System Virtual Prototype for Gripping 315
6.4.3 Simulation Analysis of Tomato Fruit Gripping with the End-Effector 318
References 322
Chapter 7 Modeling of the Vacuum Sucked Pulling of Tomato Fruit 323
7.1 Summary 323
7.1.1 Function of Vacuum Sucked Pulling in Robotic Harvesting 323
7.1.2 Research Significance 324
7.1.3 Content and Innovation 325
7.2 Modeling of Mechanical Behavior for Sucking with Suction
7.2.1 Mechanical Relation Between Suction Pad and Spherical Surface 326
7.2.2 Experiment on Influence Factors of Suction Force 329
7.2.3 The Effect of Fruit Surface Contour on Pull-off Force 332
7.3 Mechanical Model of Vacuum Sucked Pulling 334
7.3.1 Kinematic and Force Balance Analyses of Pulling of On-plant Fruit with Suction Pad 334
7.3.2 Static Analysis of Pulling of On-plant Fruit with Suction Pad 335
7.3.3 Discussion 338
7.4 Probability Model of Sucked Pulling of On-plant Tomato
7.4.1 Rate oflnterference and Success of Fruit Gripping 345
7.4.2 The Proportion of Fruit Number Per Cluster for Different Harvesting Rounds 346
7.4.3 The Required Sucked Pulling Distance and Its Probability for Different Fruit Number in Each Cluster 349
7.4.4 Theoreticallnfluence of Required Sucked Pulling Distance on the Rate of Gripping Interference 360
7.4.5 Determination of Sucked Pulling Distance 361
References 363
Chapter 8 Fruit Detaching Methods for Robotic Damage-Free Tomato Harvesting 365
8.1 Summary 365
8.1.1 Research Significance 365
8.1.2 Content and Innovation 365
8.2 Theoretical and Experimental Comparison of Non-tool Fruit Detaching Methods 366
8.2.1 Non-tool Fruit Detaching Methods 366
8.2.2 Experiments of Non-tool Detaching of Tomato Fruit 367
8.2.3 Theory of Strength and Detachment of Abscission Layers 372
8.2.4 Discussion 374
8.3 Experimental Exploration of Laser Cutting of Stems 379
8.3.1 Put Forward Laser Cutting of Stems 379
8.3.2 The Principle and Advantages of Laser Cutting of Biomaterials 379
8.3.3 Particularity and Feasibility of Laser Cutting of Stem 382
8.3.4 Experiments on Laser Drilling and Cutting of Tomato Stems 382
8.3.5 Results and Discussion 386
8.3.6 Realization of Laser Cutting of Peduncles 393
8.4 Discussion 395
References 397
Chapter9 Control Optimization and Test Study 403
9.1 Summary 403
9.1.1 Research Significance 403
9.1.2 Content and Innovation 403
9.2 Parameter Optimization of Speedy Flexible Gripping 404
9.2.1 PID Parameter Adjustment of the Motion Control System 404
9.2.2 Energy Consumption Analysis of Acceleration and Deceleration Stage 415
9.2.3 Speed Optimization of Speedy Flexible Gripping 426
9.3 Control Optimization of Vacuum Sucked Pulling 432
9.3.1 The Relationship Between Maximum Pulling Speed and Displacement in Acceleration Stage 432
9.3.2 The Relationship Between the Dynamic Pulling Force and the Threshold of Vacuum Degree 437
9.3.3 0ptimization of Displacement/Position Parameters for Sucked Pulling of Fruit 438
9.3.4 0ptimization of Control Mode for Motion Coordination 442
9.4 Hand-Arm Coordination Control for Speedy Flexible Harvesting 445
9.4.1 Hand-Arm Coordinative Control Modes 445
9.4.2 Hand-Arm Coordinated Harvesting Experiments 447
References 452
  • 商品评价
  • 交易规则


  • 发货方式


  • 自动:在特色服务中标有自动发货的商品,拍下后,源码类 软件类 商品会在订单详情页显示来自卖家的商品下载链接,点卡类 商品会在订单详情直接显示卡号密码。

    手动:未标有自动发货的的商品,付款后,商品卖家会收到平台的手机短信、邮件提醒,卖家会尽快为您发货,如卖家长时间未发货,买家也可通过订单上的QQ或电话主动联系卖家。


  • 退款说明


  • 1、源码类:商品详情(含标题)与实际源码不一致的(例:描述PHP实际为ASP、描述的功能实际缺少、功能不能正常使用等)!有演示站时,与实际源码不一致的(但描述中有"不保证完全一样、可能有少许偏差"类似显著公告的除外);

  • 2、营销推广:未达到卖家描述标准的;

    3、点卡软件所售点卡软件无法使用的;

  • 3、发货:手动发货商品,在卖家未发货前就申请了退款的;

    4、服务:卖家不提供承诺的售后服务的;(双方提前有商定和描述中有显著声明的除外)

    5、其他:如商品或服务有质量方面的硬性常规问题的。未符合详情及卖家承诺的。

  • 注:符合上述任一情况的,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法修改描述!


  • 注意事项


  • 1、在付款前,双方在QQ上所商定的内容,也是纠纷评判依据(商定与商品描述冲突时,以商定为准);

    2、源码商品,同时有网站演示与商品详情图片演示,且网站演示与商品详情图片演示不一致的,默认按商品详情图片演示作为纠纷评判依据(卖家有特别声明或有额外商定的除外);

  • 3、点卡软件商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

  • 4、营销推广商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

    5、在有"正当退款原因和依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;

    6、虽然交易产生纠纷的几率很小,卖家也肯定会给买家最完善的服务!但请买卖双方尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于送码网快速介入处理。


  • 送码声明


  • 1、送码网作为第三方中介平台,依据双方交易合同(商品描述、交易前商定的内容)来保障交易的安全及买卖双方的权益;

  • 2、非平台线上交易的项目,出现任何后果均与送码网无关;无论卖家以何理由要求线下交易的(如:要求买家支付宝转账付款的,微信转账付款的等),请联系管理举报,本平台将清退卖家处理。