• 最后更新 2023-12-06
  • 销量/好评 0 + 评论
  • 交易规则(重要)

机器视觉及深度学习——经典算法与系统搭建
本站优惠价
90.00
10.0折 原价:¥90.00
  • 销量
  • 卖家
  • 0+
  • 木垛旗舰店

服务由"木垛旗舰店"发货,并提供售后服务。

    担保交易,安全保证,有问题不解决可申请退款。购买前请询问清楚卖家,以卖家承诺为准! 自动发货商品,随时可以购买,付款后在订单详情下载,零等待。 不同会员等级尊享不同购买折扣。
天猫优惠券

天猫优惠券

已缴纳保证金

该商家已加入保障计划

商品名称:机器视觉及深度学习——经典算法与系统搭建开本:16开 作者:陈兵旗、谭彧 主编页数:定价:118出版时间:2022-08-01ISBN号:9787122411457 印刷时间:2022-08-01出版社:化学工业版次:1商品类型:图书印次:1 作者简介:陈兵旗,中国农业大学,教授,中国农业机械学会基础技术分会理事,美国 农业生物工程学会ASABE会员,海外华人农业工程学会AOC会员。Transaction of ASABE, Biosystems Engineering, IEEE Transactions on Automation Science and Engineering, 中国农机学报、中国农业工程学报等多家 外 学术期刊论文审稿人。 自然基金以及多个省市基金项目评审专家。 内容提要:深度学习和传统机器视觉技术相融合,可以大大提高AI 技术的效率和精度。本书分上、下两篇,共19 章内容,详细讲解了机器视觉及深度学习的理论和编程实践。
    上篇介绍理论算法。包括机器视觉的经典图像处理算法、深度学习的理论基础和目前常用的深度学习框架。
    下篇介绍编程环境及系统搭建。讲解了机器视觉图像处理算法及深度学习的编程工具 VC++、Python 和 OpenCV;利用 VC++和 Python 工具,搭建图像处理的工程界面;介绍了常用的9 种深度学习框架的获得方法、安装设置、工程创建,以及深度学习工程的编译、训练、评估与部署方法。
    每一个搭建的工程,都提供一套可下载的源代码程序,方便读者下载学习。
    本书理论与实践兼顾,可为从事机器视觉技术及人工智能研究和应用的工程技术人员提供帮助,也可供高等院校相关专业师生学习参考。

......

目录:上篇 理论算法 1
第1章 基础知识 2
1.1 图像与颜色 2
1.1.1 彩色图像 2
1.1.2 灰度图像 3
1.1.3 颜色变换 3
1.2 机器视觉 4
1.2.1 机器视觉构成 4
1.2.2 数字图像处理 6
1.3 深度学习 9
1.3.1 基本概念 9
1.3.2 基本思想 10
1.3.3 深度学习常用方法 10

第2章 目标提取 21
2.1 灰度目标 21
2.1.1 阈值分割 21
2.1.2 自动二值化处理 22
2.2 彩色图像 24
2.2.1 果树上红色桃子的提取 24
2.2.2 绿色麦苗的提取 26
2.3 运动图像 27
2.3.1 帧间差分 27
2.3.2 背景差分 27
2.4 C 语言实现 28
2.4.1 二值化处理 28
2.4.2 双阈值二值化处理 29
2.4.3 直方图 30
2.4.4 直方图平滑化 31
2.4.5 大津法二值化处理 31

第3章 边缘检测 34
3.1 图像边缘 34
3.2 微分处理 35
3.2.1 一阶微分 35
3.2.2 二阶微分 36
3.3 模板匹配 37
3.4 C 语言实现 39
3.4.1 一阶微分边缘检测 39
3.4.2 二阶微分边缘检测 40
3.4.3 Prewitt 算子边缘检测 41
3.4.4 二值图像的细线化处理 43

第4章 去噪声处理 46
4.1 移动平均 46
4.2 中值滤波 47
4.3 二值图像去噪声 49
4.4 C 语言实现 50
4.4.1 移动平均法 50
4.4.2 中值滤波 51
4.4.3 腐蚀处理 52
4.4.4 膨胀处理 53

第5章 几何参数检测 55
5.1 图像的几何参数 55
5.2 区域标记 58
5.3 几何参数检测与提取 59
5.4 C 语言实现 60
5.4.1 区域标记 60
5.4.2 计算图像特征参数 62
5.4.3 根据圆形度抽出物体 66
5.4.4 复制掩模领域的原始图像 67
5.4.5 根据面积提取对象物 67

第6章 直线检测 69
6.1 传统 Hough 变换的直线检测 69
6.2 小二乘法的直线检测 71
6.3 C 语言实现 72
6.3.1 传统 Hough 变换的直线检测 72
6.3.2 小二乘法的直线检测 74

第7章 深度学习框架介绍 77
7.1 TensorFlow 78
7.1.1 TensorFlow 的优势 78
7.1.2 TensorFlow 应用场景 79
7.1.3 TensorFlow 开发环境安装 79
7.2 Keras 80
7.2.1 Keras 的优势 81
7.2.2 Keras 应用 81
7.2.3 Keras 与 TensorFlow2 的关系 81
7.2.4 Keras 的安装 82
7.3 PyTorch 82
7.3.1 PyTorch 的优势 82
7.3.2 PyTorch 的典型应用 83
7.3.3 PyTorch 和 TensorFlow 的比较 83
7.3.4 PyTorch 的安装 84
7.4 其他深度学习框架 85
7.4.1 Caffe 85
7.4.2 MXNet 85
7.4.3 CNTK 86
7.4.4 Theano 86
7.4.5 Darknet 87
7.4.6 PaddlePaddle 87

下篇 编移环境及系统搭建 89
第8章 平台软件 90
8.1 OpenCV 90
8.1.1 基本功能介绍 90
8.1.2 获取与安装 91
8.2 VC++ 92
8.2.1 基本功能介绍 92
8.2.2 获取与安装 93
8.3 Python 95
8.3.1 基本功能介绍 95
8.3.2 获取与安装 95

第9章 VC++图像处理工程 98
9.1 工程创建 98
9.1.1 启动 Visual Studio 2010 98
9.1.2 创建新建工程 99
9.2 系统设置 115
9.3 编译执行 117

0章 Python 图像处理系统 119
10.1 工程创建 119
10.2 系统设置 121
10.3 编译执行 127

1章 TensorFlow 深度学习工程 134
11.1 框架获得 134
11.2 安装设置 134
11.3 案例 135
11.3.1 数据准备 135
11.3.2 训练模型 137
11.3.3 验证准确率 139
11.3.4 导出模型并对图片分类 139

2章 Keras 深度学习工程 142
12.1 框架获得 142
12.2 安装设置步骤 143
12.3 工程创建 146
12.4 编译、训练、评估与部署 148

3章 PyTorch 深度学习工程 152
13.1 框架获得 152
13.2 安装设置 153
13.2.1 CPU 版本安装 153
13.2.2 GPU 版本安装 153
13.3 工程创建 155
13.4 训练、评估与部署 157
13.4.1 训练 157
13.4.2 评估 158
13.4.3 部署 159

4章 Caffe 深度学习工程 166
14.1 安装环境和依赖项获得 166
14.2 框架的获取 167
14.3 编译 Caffe 及其与 Python 的接口 167
14.3.1 OpenCV 的安装 167
14.3.2 Caffe 编译 170
14.4 目标分类测试 181
14.4.1 数据集准备 181
14.4.2 训练模型 186
14.4.3 用训练好的模型对数据进行预测 188

5章 MXNet 深度学习工程 190
15.1 框架获取及环境设置 190
15.1.1 环境准备 190
15.1.2 利用 Anaconda 创建运行环境 191
15.2 基于笑脸目标检测的 MXNet 框架测试 192
15.2.1 创建训练数据集 192
15.2.2 训练模型 197
15.2.3 测试模型 200

6章 CNTK 深度学习工程 202
16.1 框架的获取 202
16.2 编译 202
16.2.1 CPU 版本编译 202
16.2.2 基于 Linux 系统的 GPU 版本编译 206
16.3 CNTK 测试 208
16.3.1 创建数据集 208
16.3.2 模型训练 211
16.3.3 模型测试 213

7章 Theano 深度学习工程 216
17.1 框架获得 216
17.2 安装设置 217
17.3 工程创建 220
17.4 编译、训练、评估与部署 222

8章 YoloV4 深度学习工程 226
18.1 框架的获取 226
18.2 框架源码编译及环境设置 226
18.2.1 CPU 版本编译 226
18.2.2 GPU 版本编译 227
18.2.3 Darknet 测试 230
18.3 创建 Yolo 训练数据集 231
18.4 训练 YoloV4 模型 235
18.5 测试 YoloV4 模型 237

9章 PaddlePaddle 深度学习工程 238
19.1 框架获得 240
19.2 安装设置 240
19.3 工程创建、编译、训练、评估与测试 243
19.4 基于高层 API 的任务快速实现 261

参考文献 263

......

精 彩 页:
  • 商品评价
  • 交易规则


  • 发货方式


  • 自动:在特色服务中标有自动发货的商品,拍下后,源码类 软件类 商品会在订单详情页显示来自卖家的商品下载链接,点卡类 商品会在订单详情直接显示卡号密码。

    手动:未标有自动发货的的商品,付款后,商品卖家会收到平台的手机短信、邮件提醒,卖家会尽快为您发货,如卖家长时间未发货,买家也可通过订单上的QQ或电话主动联系卖家。


  • 退款说明


  • 1、源码类:商品详情(含标题)与实际源码不一致的(例:描述PHP实际为ASP、描述的功能实际缺少、功能不能正常使用等)!有演示站时,与实际源码不一致的(但描述中有"不保证完全一样、可能有少许偏差"类似显著公告的除外);

  • 2、营销推广:未达到卖家描述标准的;

    3、点卡软件所售点卡软件无法使用的;

  • 3、发货:手动发货商品,在卖家未发货前就申请了退款的;

    4、服务:卖家不提供承诺的售后服务的;(双方提前有商定和描述中有显著声明的除外)

    5、其他:如商品或服务有质量方面的硬性常规问题的。未符合详情及卖家承诺的。

  • 注:符合上述任一情况的,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法修改描述!


  • 注意事项


  • 1、在付款前,双方在QQ上所商定的内容,也是纠纷评判依据(商定与商品描述冲突时,以商定为准);

    2、源码商品,同时有网站演示与商品详情图片演示,且网站演示与商品详情图片演示不一致的,默认按商品详情图片演示作为纠纷评判依据(卖家有特别声明或有额外商定的除外);

  • 3、点卡软件商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

  • 4、营销推广商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

    5、在有"正当退款原因和依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;

    6、虽然交易产生纠纷的几率很小,卖家也肯定会给买家最完善的服务!但请买卖双方尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于送码网快速介入处理。


  • 送码声明


  • 1、送码网作为第三方中介平台,依据双方交易合同(商品描述、交易前商定的内容)来保障交易的安全及买卖双方的权益;

  • 2、非平台线上交易的项目,出现任何后果均与送码网无关;无论卖家以何理由要求线下交易的(如:要求买家支付宝转账付款的,微信转账付款的等),请联系管理举报,本平台将清退卖家处理。


热门推荐
浏览记录