• 最后更新 2023-10-09
  • 销量/好评 1 + 评论
  • 交易规则(重要)

利用Python实现概率、统计及机器学习方法(原书第2版)
本站优惠价
83.30
10.0折 原价:¥83.3
  • 销量
  • 卖家
  • 9+
  • 当当网官方旗舰店

服务由"当当网官方旗舰店"发货,并提供售后服务。

    担保交易,安全保证,有问题不解决可申请退款。购买前请询问清楚卖家,以卖家承诺为准! 自动发货商品,随时可以购买,付款后在订单详情下载,零等待。 不同会员等级尊享不同购买折扣。
天猫优惠券

天猫优惠券

已缴纳保证金

该商家已加入保障计划

利用Python实现概率、统计及机器学习方法(原书第2版)...... 基本信息
商品名称: 利用Python实现概率、统计及机器学习方法(原书第2版) 开本: 16开
作者: [美]何塞·安平科(José Unpingco) 著 定价: 119.00
ISBN号: 9787111717737 出版时间: 2023-02-01
出版社: 机械工业出版社 印刷时间: 2023-02-01
版次: 1 印次: 1

译者序
前言
版前言
符号说明
章科学Python入门1
11安装和设置2
12Numpy4
121Numpy数组和内存5
122Numpy矩阵8
123Numpy广播操作9
124Numpy掩码数组11
125浮点数11
126Numpy优化简介14
13Matplotlib15
131Matplotlib的替代方法16
132Matplotlib的扩展17
14IPython17
15Jupyter Notebook18
16Scipy20
17Pandas21
171Series21
172DataFrame23
18Sympy25
19编译库接口27
110集成开发环境28
111性能和并行编程快速指南28
112其他资源31
参考文献32
第2章概率33
21引言33
211概率密度34
212随机变量35
213连续随机变量39
214微积分以外的变量变换41
215独立随机变量42
216经典Broken Rod示例44
22投影法45
221加权距离47
23条件期望作为投影47
231附录51
24条件期望与均方误差52
25条件期望和均方误差优化
示例55
251示例155
252示例258
253示例360
254示例463
255示例564
256示例666
26有用的分布67
261正态分布67
262多项分布67
263卡方分布69
264泊松分布和指数分布71
265伽马分布72
266贝塔分布73
267狄利克雷多项分布74
X
XI
27信息熵76
271信息论的概念76
272信息熵的性质78
273KullbackLeibler散度79
274交叉熵作为大似然80
28矩母函数80
29蒙特卡罗采样方法83
291离散变量逆CDF法83
292连续变量逆CDF法85
293舍选法86
210采样重要性重采样90
211实用的不等式92
2111马尔可夫不等式92
2112切比雪夫不等式93
2113霍夫丁不等式94
参考文献96
第3章统计97
31引言97
32用于统计的Python模块98
321Scipy统计模块98
322Sympy统计模块99
323其他用于统计的Python
模块99
33收敛类型100
331几乎必然收敛100
332依概率收敛102
333依分布收敛104
334极限定理104
34大似然估计105
341设置抛硬币试验107
342Delta方法115
35假设检验和p值117
351回到抛硬币的例子118
352ROC曲线120
353p值122
354检验统计量123
355多重假设检验129
356Fisher检验129
36置信区间131
37线性回归134
371扩展至多个协变量141
38大后验概率145
39鲁棒统计150
310自助法155
3101参数化自助法159
311高斯马尔可夫模型160
312非参数方法162
3121核密度估计162
3122核平滑164
3123非参数回归估计169
3124近邻回归169
3125核回归173
3126维数灾难174
3127非参数检验176
313生存分析181
参考文献187
第4章机器学习188
41引言188
42Python机器学习模块188
43学习理论192
431机器学习理论概述194
432泛化理论198
433泛化/近似复杂度示例199
434交叉验证204
435偏差和方差208
436学习噪声211
44决策树213
441随机森林219
442提升树220
45逻辑回归223
46广义线性模型231
47正则化236
471岭回归239
472套索回归243
48支持向量机244
49降维248
491独立成分分析252
410聚类256
411集成方法259
4111装袋法259
4112提升法261
412深度学习262
4121TensorFlow概述270
4122梯度下降275
4123基于卷积神经网络的图像
处理286
参考文献301

......

本书针对Python 3.6 版本进行了更新,涵盖了在这些领域中使用Python组件演示的概率、统计和机器学习之间的链接的关键思想。所提供的Python代码、所有的图形和数值结果都是可重复的。作者通过使用多种分析方法和Python代码处理有意义的示例来开发机器学习中的关键直觉,从而将理论概念与具体实现联系起来。对某些重要结果也给出了详细的证明。

利用Python实现概率、统计及机器学习方法(原书第2版)......

  • 商品评价
  • 匿名
  • 默认好评,没有填写评论内容!
  • 2023-07-27
好评
  • 交易规则


  • 发货方式


  • 自动:在特色服务中标有自动发货的商品,拍下后,源码类 软件类 商品会在订单详情页显示来自卖家的商品下载链接,点卡类 商品会在订单详情直接显示卡号密码。

    手动:未标有自动发货的的商品,付款后,商品卖家会收到平台的手机短信、邮件提醒,卖家会尽快为您发货,如卖家长时间未发货,买家也可通过订单上的QQ或电话主动联系卖家。


  • 退款说明


  • 1、源码类:商品详情(含标题)与实际源码不一致的(例:描述PHP实际为ASP、描述的功能实际缺少、功能不能正常使用等)!有演示站时,与实际源码不一致的(但描述中有"不保证完全一样、可能有少许偏差"类似显著公告的除外);

  • 2、营销推广:未达到卖家描述标准的;

    3、点卡软件所售点卡软件无法使用的;

  • 3、发货:手动发货商品,在卖家未发货前就申请了退款的;

    4、服务:卖家不提供承诺的售后服务的;(双方提前有商定和描述中有显著声明的除外)

    5、其他:如商品或服务有质量方面的硬性常规问题的。未符合详情及卖家承诺的。

  • 注:符合上述任一情况的,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法修改描述!


  • 注意事项


  • 1、在付款前,双方在QQ上所商定的内容,也是纠纷评判依据(商定与商品描述冲突时,以商定为准);

    2、源码商品,同时有网站演示与商品详情图片演示,且网站演示与商品详情图片演示不一致的,默认按商品详情图片演示作为纠纷评判依据(卖家有特别声明或有额外商定的除外);

  • 3、点卡软件商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

  • 4、营销推广商品,默认按商品详情作为纠纷评判依据(特别声明或有商定除外);

    5、在有"正当退款原因和依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;

    6、虽然交易产生纠纷的几率很小,卖家也肯定会给买家最完善的服务!但请买卖双方尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于送码网快速介入处理。


  • 送码声明


  • 1、送码网作为第三方中介平台,依据双方交易合同(商品描述、交易前商定的内容)来保障交易的安全及买卖双方的权益;

  • 2、非平台线上交易的项目,出现任何后果均与送码网无关;无论卖家以何理由要求线下交易的(如:要求买家支付宝转账付款的,微信转账付款的等),请联系管理举报,本平台将清退卖家处理。


热门推荐
浏览记录