60.7
10.0折
原价¥60.7

收藏
深度学习基础与工程实践书郭泽文机器学习普通大众工业技术书籍
担保交易,安全保证,有问题不解决可申请退款。
商品属性
人天兀鲁思图书专营店
人天兀鲁思图书专营店
本商品由 人天兀鲁思图书专营店 提供技术支持并发货!
进店逛逛

买家常见问题解答(必看)

商品详情
用户评价
交易规则
基本信息 
书名:  深度学习基础与工程实践
作者:  郭泽文编著
出版社:  电子工业出版社
出版日期:  2021-09-01
版次:  1
ISBN:  9787121419225
市场价:  89.0
目录 第1章 搭建环境
1.1 安装Anaconda
1.2 安装CUDA及其加速器
1.3 安装TensorFlow 2
1.4 开发环境——Spyder
1.5 可视化分析工具——TensorBoard
第2章 机器学习与深度学习
2.1 机器学习
2.2 深度学习
第3章 构建神经网络模型
3.1 搭建一个全连接网络
3.2 确定要解决的问题
3.3 准备数据与数据预处理
3.3.1 数据集
3.3.2 拟合问题初探
3.3.3 数据集划分与数据污染
3.3.4 神经网络中的数据表示
3.3.5 张量操作
3.3.6 数据预处理
3.4 构建神经网络
3.4.1 构建神经网络的方法
3.4.2 理解Sequential Model的构建方法
3.4.3 理解layers与layer
3.4.4 理解models与model
3.4.5 理解Dense
3.4.6 激活函数
3.5 编译模型
3.5.1 优化器
3.5.2 损失函数
3.5.3 评价指标
3.6 训练模型
3.6.1 使用fit方法训练模型
3.6.2 使用fit_generator方法训练模型
3.6.3 使用TensorBoard回调函数训练模型
3.7 测试模型
3.7.1 能评估
3.7.2 模型预测
3.8 保存模型
3.8.1 save方式
3.8.2 save_weights方式
3.8.3 SavedModel方式
3.9 使用模型
3.9.1 以save weights方式保存的模型的加载方法
3.9.2 以save方式保存的模型的加载方法
3.9.3 以SavedModel方式保存的模型的加载方法
3.10 模型的重新训练与预测
3.11 使用模型在新数据上进行推理
第4章 全连接网络
4.1 全连接层
4.2 使用全连接网络解决文本分类问题
4.2.1 基于IMDB数据集的二分类任务
4.2.2 基于Reuters数据集的多分类任务
4.3 使用全连接网络解决标量回归问题
4.3.1 使用留出验证集方式训练模型
4.3.2 使用K折交叉验证方式训练模型
4.4 全连接网络图片分类问题的优化
4.4.1 降低模型容量:缩减模型的超参数
4.4.2 奥卡姆剃刀原则:正则化模型参数
4.4.3 初识失活:Dropout基础
第5章 卷积神经网络
5.1 使用N解决MNIST数据集的分类问题
5.2 全连接网络面临的问题
5.3 局部相关与权值共享
5.4 构建卷积神经网络
5.4.1 N与Dense能比较
5.4.2 卷积层
5.4.3 池化层
5.4.4 打平层
5.4.5 卷积神经网络基础架构
5.5 使用Conv1D解决二分类问题
5.5.1 EarlyStopping函数:训练终止
5.5.2 ModelCheckpoint函数:动态保存模型
5.5.3 再谈失活
第6章 循环神经网络
6.1 循环神经网络基础
6.1.1 序列
6.1.2 序列向量化
6.1.3 权值共享
6.1.4 全局语义
6.1.5 循环神经网络概述
6.1.6 循环层
6.2 SimpleRNN
6.2.1 序列数据的预处理
6.2.2 理解SimpleRNN层
6.3 LSTM网络
6.3.1 短时记忆与遗忘曲线
6.3.2 梯度问题
6.3.3 门控机制
6.3.4 理解LSTM层
6.4 GRU
6.4.1 LSTM网络面临的问题
6.4.2 门控机制的优化方法
6.4.3 理解GRU层
6.5 双向循环神经网络
6.5.1 双向LSTM网络
6.5.2 双向GRU
6.6 解决循环神经网络的拟合问题
6.6.1 通过正则化模型参数解决拟合问题
6.6.2 使用失活解决拟合问题
第7章 深度学习高阶实践
7.1 函数式API网络模型
7.1.1 如何实现层图共享
7.1.2 如何实现模型共享
7.1.3 如何实现模型组装与嵌套
7.1.4 如何实现多输入多输出模型
7.2 混合网络模型
7.3 基于Xception架构实现图片分类任务
7.3.1 Xception架构
7.3.2 使用image_dataset_from_directory函数构建数据集
7.3.3 数据技术
7.3.4 数据器的使用
7.3.5 二维深度分离卷积层:SeparableConv2D
7.3.6 数据标准化前置与中置
7.3.7 编译与训练模型
7.3.8 在新数据上进行推理
7.4 残差网络在CIFAR10数据集上的实践
7.4.1 CIFAR10数据集
7.4.2 深度残差网络:ResNet
7.4.3 基于ResNet构建多分类任务模型
7.5 GloVe预训练词嵌入实践
7.5.1 从原始文件构建训练集
7.5.2 解析并加载GloVe
7.5.3 在二分类模型中使用词嵌入矩阵
7.5.4 模型的编译与训练
7.5.5 构建测试集与模型评估
7.6 基于预训练网络VGG16完成图片分类任务
7.6.1 预训练网络
7.6.2 预训练网络之特征提取方法
7.6.3 预训练网络之微调模型方法
7.7 生成式深度学习实践
7.7.1 基于ResNet50的 Deep Dream技术实践
7.7.2 基于VGG19网络的风格迁移实践
7.8 使用自定义回调函数监控模型的行为
7.8.1 将约束理论应用于模型调优
7.8.2 构建全局回调函数
7.8.3 构建epoch级的自定义回调函数
7.8.4 构建batch级的自定义回调函数
第8章 模型的工程封装与部署
8.1 深度学工程封装方法
8.2 使用Flask部署神经网络模型
8.2.1 Flask是什么
8.2.2 将模型部署成接口提供给第三方使用
8.2.3 深度学习模型与Web应用协同工作
8.3 基于TFX的部署实践
8.3.1 TensorFlow Serving服务模型
8.3.2 基于TensorFlow Serving与Docker部署深度学习模型
第9章 回顾与展望
9.1 神经网络的架构
9.2 构建神经网络模型的流程与实践
9.3 深度学局限与展望内容介绍 本书以工程实践为主线,基于TensorFlow2。0软件框架详细介绍了深度学工作原理和方法,并以实际代码为例,剖析了构建神经网络模型的流程、全连接网络的运行原理、卷积神经网络的结构与运行机制、循环神经网络的结构与运行机制,讨论了使用Dense、Conv1D、Conv2D、SimpleRNN、LTSM、GRU、Bidirectional等深度学习模型解决计算机视觉、序列问题的方法,并在此基础上基于具体示例介绍了深度学高阶实践。
本书于为人工智能算法工程师及从事人工智能引擎相关工作的人提供理论与实践指导,适合对人工智能及其应用感兴趣的读者阅读。在线试读 媒体评论 以工程实践为主线,基于TensorFlow 2.0详细介绍深度学工作原理、方法和代码实现本书从搭建一个以学深度学习开发环境入手,讨论了如何使用深度学习解决人工智能中“所见所闻”的问题,以及如何基于对“所见所闻”的内容进行理解、解释、规划、推理、演绎、归纳等,让人工智能做出相应的、合适的反应。
本书从搭建一个以学深度学习开发环境入手,讨论了如何使用深度学习解决人工智能中“所见所闻”的问题,以及如何基于对“所见所闻”的内容进行理解、解释、规划、推理、演绎、归纳等,让人工智能做出相应的、合适的反应。

店铺

客服

购物车
领取优惠
立即购买