122.4
8.0折
原价¥153.8

收藏
深度学习:从基础到实践(上、下册) 神经网络机器学习强化学习人工智能 Kearas算法概率函数数据集神经元 博库网
担保交易,安全保证,有问题不解决可申请退款。
商品属性
博库旗舰店
博库旗舰店
本商品由 博库旗舰店 提供技术支持并发货!
进店逛逛

买家常见问题解答(必看)

商品详情
用户评价
交易规则
商品名称:深度学习:从基础到实践(上、下册) 神经网络机器学习强化学习人工智能 Kearas算法概率函数数据集神经元 博库网开本:16开 作者:安德鲁·格拉斯纳(Andrew Glassner)|译者:罗家佳页数:定价:199.8出版时间:2022-12-01ISBN号:9787115554512 印刷时间:2022-12-01出版社:人民邮电版次:1商品类型:图书印次:1 作者简介:Andrew Glassner博士是一位作家,同时也是计算机交互、图形学领域的顾问。他于1978年开始从事3D计算机绘图工作,在NYIT计算机图形实验室、凯斯西储大学、IBM TJ Watson研究实验室、代尔夫特理工大学、贝尔通信研究、施乐帕克研究中心和微软研究院等公司进行了相关研究。《纽约时报》曾评价他为“计算机图形研究领域 受尊敬的天才之一。”

......

内容提要:本书从基本概念和理论入手,通过近千张图和简单的例子由浅入深地讲解深度学习的相关知识,且不涉及复杂的数学内容。
    本书分为上下两册。上册着重介绍深度学习的基础知识,旨在帮助读者建立扎实的知识储备,主要介绍随机性与基础统计学、训练与测试、过拟合与欠拟合、神经元、学习与推理、数据准备、分类器、集成算法、前馈网络、激活函数、反向传播等内容。下册介绍机器学习的 scikit-learn 库和深度学习的 Keras 库(这两种库均基于 Python 语言),以及卷积神经网络、循环神经网络、自编码器、强化学习、生成对抗网络等内容,还介绍了一些创造性应用,并给出了一些典型的数据集,以帮助读者 好地了解学习。
    本书适合想要了解和使用深度学习的人阅读,也可作为深度学习教学培训领域的入门级参考用书。

......

目录:上册

第 1章 机器学习与深度学习入门 1
1.1 为什么这一章出现在这里 1
1.1.1 从数据中提取含义 1
1.1.2 专家系统 3
1.2 从标记数据中学习 4
1.2.1 一种学习策略 5
1.2.2 一种计算机化的学习策略 6
1.2.3 泛化 8
1.2.4 让我们仔细看看学习过程 9
1.3 监督学习 10
1.3.1 分类 10
1.3.2 回归 11
1.4 无监督学习 12
1.4.1 聚类 13
1.4.2 降噪 13
1.4.3 降维 14
1.5 生成器 16
1.6 强化学习 18
1.7 深度学习 19
1.8 接下来会讲什么 22
参考资料 22
第 2章 随机性与基础统计学 24
2.1 为什么这一章出现在这里 24
2.2 随机变量 24
2.3 一些常见的分布 29
2.3.1 均匀分布 30
2.3.2 正态分布 31
2.3.3 伯努利分布 34
2.3.4 多项式分布 34
2.3.5 期望值 35
2.4 独立性 35
2.5 抽样与放回 36
2.5.1 有放回抽样 36
2.5.2 无放回抽样 37
2.5.3 做选择 38
2.6 Bootstrapping算法 38
2.7 高维空间 41
2.8 协方差和相关性 43
2.8.1 协方差 43
2.8.2 相关性 44
2.9 Anscombe四重奏 47
参考资料 48
第3章 概率 50
3.1 为什么这一章出现在这里 50
3.2 飞镖游戏 50
3.3 初级概率学 52
3.4 条件概率 52
3.5 联合概率 55
3.6 边际概率 57
3.7 测量的正确性 58
3.7.1 样本分类 58
3.7.2 混淆矩阵 60
3.7.3 混淆矩阵的解释 62
3.7.4 允许错误分类 64
3.7.5 准确率 65
3.7.6 精度 66
3.7.7 召回率 67
3.7.8 关于精度和召回率 68
3.7.9 其他方法 69
3.7.10 同时使用精度和召回率 71
3.7.11 f1分数 72
3.8 混淆矩阵的应用 73
参考资料 77
第4章 贝叶斯定理 78
4.1 为什么这一章出现在这里 78
4.2 频率论者法则以及贝叶斯法则 78
4.2.1 频率论者法则 79
4.2.2 贝叶斯法则 79
4.2.3 讨论 79
4.3 抛硬币 80
4.4 这枚硬币公平吗 81
4.4.1 贝叶斯定理 86
4.4.2 贝叶斯定理的注意事项 87
4.5 生活中的贝叶斯定理 89
4.6 重复贝叶斯定理 91
4.6.1 后验-先验循环 92
4.6.2 例子:挑到的是哪种硬币 93
4.7 多个假设 97
参考资料 101
第5章 曲线和曲面 102
5.1 为什么这一章出现在这里 102
5.2 引言 102
5.3 导数 103
5.4 梯度 108
参考资料 112
第6章 信息论 113
6.1 为什么这一章出现在这里 113
6.2 意外程度与语境 113
6.2.1 意外程度 114
6.2.2 语境 114
6.3 用比特作为单位 115
6.4 衡量信息 116
6.5 事件的大小 117
6.6 自适应编码 117
6.7 熵 122
6.8 交叉熵 123
6.8.1 两种自适应编码 123
6.8.2 混合编码 125
6.9 KL散度 127
参考资料 128
第7章 分类 130
7.1 为什么这一章出现在这里 130
7.2 二维分类 130
7.3 二维多分类 134
7.4 多维二元分类 135
7.4.1 one-versus-rest 135
7.4.2 one-versus-one 136
7.5 聚类 138
7.6 维度灾难 141
参考资料 149
第8章 训练与测试 150
8.1 为什么这一章出现在这里 150
8.2 训练 150
8.3 测试数据 153
8.4 验证数据 156
8.5 交叉验证 157
8.6 对测试结果的利用 160
参考资料 161
第9章 过拟合与欠拟合 162
9.1 为什么这一章出现在这里 162
9.2 过拟合与欠拟合 162
9.2.1 过拟合 162
9.2.2 欠拟合 164
9.3 过拟合数据 164
9.4 及早停止 167
9.5 正则化 168
9.6 偏差与方差 169
9.6.1 匹配潜在数据 170
9.6.2 高偏差,低方差 172
9.6.3 低偏差,高方差 173
9.6.4 比较这些曲线 173
9.7 用贝叶斯法则进行线拟合 175
参考资料 179
第 10章 神经元 181
10.1 为什么这一章出现在这里 181
10.2 真实神经元 181
10.3 人工神经元 182
10.3.1 感知机 183
10.3.2 感知机的历史 183
10.3.3 现代人工神经元 184
10.4 小结 188
参考资料 188
第 11章 学习与推理 190
11.1 为什么这一章出现在这里 190
11.2 学习的步骤 190
11.2.1 表示 190
11.2.2 评估 192
11.2.3 优化 193
11.3 演绎和归纳 193
11.4 演绎 194
11.5 归纳 199
11.5.1 机器学习中的归纳术语 201
11.5.2 归纳谬误 202
11.6 组合推理 203
11.7 操作条件 204
参考资料 206
第 12章 数据准备 208
12.1 为什么这一章出现在这里 208
12.2 数据变换 208
12.3 数据类型 210
12.4 数据清理基础 212
12.4.1 数据清理 212
12.4.2 现实中的数据清理 213
12.5 归一化和标准化 213
12.5.1 归一化 213
12.5.2 标准化 214
12.5.3 保存数据的转换方式 215
12.5.4 转换方式 216
12.6 特征选择 217
12.7 降维 217
12.7.1 主成分分析 217
12.7.2 图像的标准化和PCA 222
12.8 转换 226
12.9 切片处理 229
12.9.1 逐样本处理 230
12.9.2 逐特征处理 230
12.9.3 逐元素处理 231
12.10 交叉验证转换 232
参考资料 234
第 13章 分类器 236
13.1 为什么这一章出现在这里 236
13.2 分类器的种类 236
13.3 k近邻法 237
13.4 支持向量机 241
13.5 决策树 247
13.5.1 构建决策树 250
13.5.2 分离节点 253
13.5.3 控制过拟合 255
13.6 朴素贝叶斯 255
13.7 讨论 259
参考资料 260
第 14

......

精 彩 页:

......


店铺

客服

购物车
领取优惠
立即购买