◎编辑推荐
·本书是全球流行的抽象代数入门经典教材,自1967年初版以来,已畅销50余年。作者约翰·弗雷利(John B. Fraleigh)出生于1930年,目前已90多岁高龄,第7版是他亲自修订的终版。本书被全世界众多大学的近世代数/抽象代数课选用为教材,比如美国哥伦比亚大学、加州大学伯克利分校、加州大学圣地亚哥分校、加州大学尔湾分校、圣路易斯华盛顿大学、波士顿大学、伊利诺伊大学、科罗拉多大学、肯塔基大学、犹他大学等。
·书中各处穿插着由作者的好友美国著名数学教育家和数学史家维克多·卡茨(Victor J. Katz)所撰写的历史评注(Historical Note),帮助读者了解相关的历史背景,这在其他数学教材中难以见到,也是本书的一大特色。
◎内容简介
本书是一部深入介绍抽象代数的入门书籍,被众多读者奉为经典。本书旨在让读者尽可能多地了解群、环和域理论的相关知识,尤其强调对代数结构本质的理解。为了便于学习,全书分成了很多的小章节,本书特色之一是基础部分内容详实,讲解充分,给读者讲解每个定义、定理的来龙去脉,为读者打下扎实的基础,对于读者进一步学习更深的代数大有助益。为了满足更多读者的需求,本书还包含了很多有关拓扑中的同调群和同调群的计算以加深对因子群的理解。作者的风格是以一种自然易懂的方式来教授内容,理论阐述清晰,条理分明,且大都以例子和练习的形式,便于直观了解。书后附有不少习题,有助于加深学生对内容的理解。读者可以扫描世图版全书最后一页上的二维码,加群获取本书完整的习题解答。
◎作者简介
约翰·弗雷利(John B. Fraleigh)是美国罗德岛大学数学与应用数学科学系的荣休教授,一生致力于数学教育,获得了诸多赞誉,罗德岛大学还设立了以他名字命名的奖学金。他出版过多部有影响力的数学教材,《抽象代数基础教程》是其代表作之一,多年来一直被奉为经典,长销不衰。
◎媒体推荐/名人推荐/读者推荐
“This is possibly one of the most elegant books on mathematics I have ever read. It really motivates the many of the definitions rather then just throwing them at you which many other authors do (like Lang, but that's not really an introductory book anyways). The best part of this book is the range of difficulty in exercises. Not only is this book good for learning algebra, it is good for learning the art of doing mathematics.”
——Geoffrey Lee, Harvard University
◎图书目录
Preface
0. Sets and Relations
I. GROUPS AND SUBGROUPS
1. Introduction and Examples
2. Binary Operations
3. Isomorphic Binary Structures
4. Groups
5. Subgroups
6. Cyclic Groups
7. Generators and Cayley Digraphs
II. PERMUTATIONS, COSETS, AND DIRECT PRODUCTS
8. Groups of Permutations
9. Orbits, Cycles, and the Alternating Groups
10. Cosets and the Theorem of Lagrange
11. Direct Products and Finitely Generated Abelian Groups
12. Plane Isometries
III. HOMOMORPHISMS AND FACTOR GROUPS
13. Homomorphisms
14. Factor Groups
15. Factor-Group Computations and Simple Groups
16. Group Action on a Set
17. Applications of G-Sets to Counting
IV. RINGS AND FIELDS
18. Rings and Fields
19. Integral Domains
20. Fermat's and Euler's Theorems
21. The Field of Quotients of an Integral Domain
22. Rings of Polynomials
23. Factorization of Polynomials over a Field
24. Noncommutative Examples
25. Ordered Rings and Fields
V. IDEALS AND FACTOR RINGS
26. Homomorphisms and Factor Rings
27. Prime and Maximal Ideas
28. Groebner Bases for Ideals
VI. EXTENSION FIELDS
29. Introduction to Extension Fields
30. Vector Spaces
31. Algebraic Extensions
32. Geometric Constructions
33. Finite Fields
VII. ADVANCED GROUP THEORY
34. Isomorphism Theorems
35. Series of Groups
36. Sylow Theorems
37. Applications of the Sylow Theory
38. Free Abelian Groups
39. Free Groups
40. Group Presentations
VIII. AUTOMORPHISMS AND GALOIS THEORY
41. Automorphisms of Fields
42. The Isomorphism Extension Theorem
43. Splitting Fields
44. Separable Extensions
45. Totally Inseparable Extensions
46. Galois Theory
47. Illustrations of Galois Theory
48. Cyclotomic Extensions
49. Insolvability of the Quintic
Appendix: Matrix Algebra
Bibliography
Notations
Index