99.0
10.0折
原价¥99.0

收藏
机器学习基础 面向预测数据分析的算法 实用范例与案例研究 约翰 D 凯莱赫 缺失值 异常基数 离群点 归一化 分箱 决策树
担保交易,安全保证,有问题不解决可申请退款。
商品属性
华心图书专营店
华心图书专营店
本商品由 华心图书专营店 提供技术支持并发货!
进店逛逛

买家常见问题解答(必看)

商品详情
用户评价
交易规则

  商品基本信息

商品名称:

  机器学习基础——面向预测数据分析的算法、实用范例与案例研究

作     者:

  [爱尔兰] 约翰?D.凯莱赫(John D. Kelleher) 布莱恩?马克?纳

市 场 价:

  99.00元

ISBN  号:

  9787111652335

出版日期:

  2020-05

页     数:

  368

字     数:

  415千字

出 版 社:

  机械工业出版社


  目录

  

译者序

前言

符号记法

第1章 面向预测数据分析的机器学习  1

1.1 什么是预测数据分析  1

1.2 什么是机器学习  2

1.3 机器学习的工作原理  4

1.4 机器学习会产生什么问题  7

1.5 预测数据分析项目的生命周期:CRISP-DM  9

1.6 预测数据分析工具  10

1.7 本书概览  11

1.8 习题  12

第2章 数据到见解再到决策  13

2.1 将商业问题转化为分析解决方案  13

2.2 可行性评估  14

2.3 设计分析基础表  16

2.4 特征的设计与实现  19

2.4.1 不同的数据类型  20

2.4.2 不同的特征类型  20

2.4.3 处理时间  21

2.4.4 法律问题  23

2.4.5 特征的实现  25

2.4.6 案例研究:汽车保险诈骗  25

2.5 总结  28

2.6 延伸阅读  28

2.7 习题  29

第3章 数据探索  31

3.1 数据质量报告  31

3.2 了解数据  35

3.2.1 正态分布  37

3.2.2 案例研究:汽车保险诈骗  38

3.3 找出数据质量问题  39

3.3.1 缺失值  39

3.3.2 异常基数  40

3.3.3 离群点  40

3.3.4 案例研究:汽车保险诈骗  41

3.4 处理数据质量问题  42

3.4.1 处理缺失值  43

3.4.2 处理离群点  43

3.4.3 案例研究:汽车保险诈骗  44

3.5 高阶数据探索  45

3.5.1 可视化特征之间的关系  45

3.5.2 度量协方差和相关性  52

3.6 数据准备  56

3.6.1 归一化  56

3.6.2 分箱  57

3.6.3 采样  60

3.7 总结  61

3.8 延伸阅读  62

3.9 习题  62

第4章 基于信息的学习  73

4.1 大思路  73

4.2 基础知识  75

4.2.1 决策树  75

4.2.2 香农熵模型  77

4.2.3 信息增益  80

4.3 标准方法:ID3算法  83

4.4 延伸与拓展  89

4.4.1 其他特征选取与纯度度量方法  89

4.4.2 处理连续描述性特征  92

4.4.3 预测连续目标  95

4.4.4 剪枝  98

4.4.5 模型组合  100

4.5 总结  103

4.6 延伸阅读  104

4.7 习题  104

第5章 基于相似性的学习  109

5.1 大思路  109

5.2 基本概念  110

5.2.1 特征空间  110

5.2.2 用距离度量测量相似性  111

5.3 标准方法:最近邻算法  113

5.4 延伸与拓展  116

5.4.1 处理嘈杂数据  116

5.4.2 高效内存搜索  118

5.4.3 数据归一化  124

5.4.4 预测连续目标  127

5.4.5 其他相似性测量  129

5.4.6 特征选取  136

5.5 总结  141

5.6 延伸阅读  143

5.7 后记  144

5.8 习题  144

第6章 基于概率的学习  149

6.1 大思路  149

6.2 基础知识  151

6.2.1 贝叶斯定理  152

6.2.2 贝叶斯预测  154

6.2.3 条件独立与因子化  157

6.3 标准方法:朴素贝叶斯模型  160

6.4 延伸与拓展  163

6.4.1 平滑  163

6.4.2 连续特征:概率密度函数  166

6.4.3 连续特征:分箱  174

6.4.4 贝叶斯网络  177

6.5 总结  187

6.6 延伸阅读  188

6.7 习题  188

第7章 基于误差的学习  192

7.1 大思路  192

7.2 基础知识  192

7.2.1 简单线性回归  193

7.2.2 测量误差  194

7.2.3 误差曲面  196

7.3 标准方法:使用梯度下降法的多变量线性回归  197

7.3.1 多变量线性回归  198

7.3.2 梯度下降法  198

7.3.3 选择学习率和初始权值  203

7.3.4 实用范例  204

7.4 延伸与拓展  206

7.4.1 解释多变量线性回归模型  206

7.4.2 用权值衰减设定学习率  208

7.4.3 处理类别描述性特征  209

7.4.4 处理类别目标特征:对数几率回归  210

7.4.5 建模非线性关系  219

7.4.6 多项对数几率回归  223

7.4.7 支持向量机  226

7.5 总结  229

7.6 延伸阅读  231

7.7 习题  231

第8章 评估  237

8.1 大思路  237

8.2 基础知识  238

8.3 标准方法:留出测试集上的误分类率  238

8.4 延伸与拓展  241

8.4.1 设计评估实验  241

8.4.2 性能度量:类别目标  246

8.4.3 性能度量:预测得分  252

8.4.4 性能度量:多项目标  264

8.4.5 性能度量:连续目标  265

8.4.6 评估部署后的模型  268

8.5 总结  273

8.6 延伸阅读  273

8.7 习题  274

第9章 案例研究:客户流失  278

9.1 商业理解  278

9.2 数据理解  280

9.3 数据准备  283

9.4 建模  286

9.5 评估  289

9.6 部署  290

第10章 案例研究:星系分类  292

10.1 商业理解  292

10.2 数据理解  294

10.3 数据准备  299

10.4 建模  303

10.4.1 基准模型  303

10.4.2 特征选取  305

10.4.3 5级别模型  306

10.5 评估  307

10.6 部署  308

第11章 面向预测数据分析的机器学习艺术  309

11.1 预测模型的不同视角  310

11.2 选择机器学习方法  313

11.2.1 将机器学习方法和项目匹配  315

11.2.2 将机器学习方法和数据匹配  315

11.3 总结  316

附录A 机器学习的描述性统计量与数据可视化  317

附录B 机器学习的概率论导论  326

附录C 机器学习中的求导方法  332

参考文献  336

索引  343


  内容简介

本书重点讲述用于预测性数据分析的*重要的机器学习方法,包括理论概念和实际应用。



店铺

客服

购物车
领取优惠
立即购买